STEP-UP II TRAINING SESSION
The economics of electric vehicles

Romeo Danielis
Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche, Università degli Studi di Trieste, e-mail: romeo.danielis@deams.units.it

Kreuzbergpass (BZ), Italy
June 19th 2019
Outline

• Why do we need for Evs?
• Are EVs technologically feasible?
• Is there an economic case for EVs?
• Which EVs are available? For which transport modes?
• Is it possible to decarbonise transport?
Do we need electric vehicles?

Two potential environemental motivations:
• Local urban air emission
• Global CO2eq emissions
Local air emissions

64% of cities globally exceed WHO guidelines. Every single measured city in the Middle East and Africa exceeds the WHO guidelines, as well as 99% of cities in south Asia and 89% in east Asia.

Gurugram in India was the most polluted city in the world in 2018

Annual mean concentration of particulate matter with diameter of 2.5 microns or less. Micrograms per cubic metre

<table>
<thead>
<tr>
<th>City</th>
<th>Concentration (μg/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gurugram, India</td>
<td>135.8</td>
</tr>
<tr>
<td>Ghaziabad, India</td>
<td>135.2</td>
</tr>
<tr>
<td>Faisalabad, Pakistan</td>
<td>130.4</td>
</tr>
<tr>
<td>Faridabad, India</td>
<td>129.1</td>
</tr>
<tr>
<td>Bhiwadi, India</td>
<td>125.4</td>
</tr>
<tr>
<td>Noida, India</td>
<td>123.6</td>
</tr>
<tr>
<td>Patna, India</td>
<td>119.7</td>
</tr>
<tr>
<td>Hotan, China</td>
<td>116</td>
</tr>
<tr>
<td>Lucknow, India</td>
<td>115.7</td>
</tr>
<tr>
<td>Lahore, Pakistan</td>
<td>114.9</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>50.9</td>
</tr>
<tr>
<td>Paris</td>
<td>15.6</td>
</tr>
<tr>
<td>London</td>
<td>12</td>
</tr>
<tr>
<td>New York</td>
<td>7</td>
</tr>
<tr>
<td>Melbourne</td>
<td>5.8</td>
</tr>
</tbody>
</table>

The guideline stipulates that PM2.5 not exceed 10 μg/m^3 annual mean

The WHO estimates that 7 million people a year die prematurely from exposure to air pollution globally, with the World Bank calculating the cost to the world economy in lost labour as $225bn.
Local air emissions in Europe

Figura 1 - Estimates for 2015, 2016 and 2017 are preliminary; 2018 is a projection based on partial data.
Source: CDIAC; Le Quéré et al 2018; Global Carbon Budget 2018
Transport’s CO2 emissions on the rise..

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2014</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>785.5</td>
<td>889.9</td>
<td>104.4</td>
</tr>
<tr>
<td>International navigation</td>
<td>109.4</td>
<td>135.2</td>
<td>25.8</td>
</tr>
<tr>
<td>International aviation</td>
<td>69.7</td>
<td>137.1</td>
<td>67.4</td>
</tr>
<tr>
<td>Energy supply</td>
<td>1861.4</td>
<td>1334.3</td>
<td>-527.1</td>
</tr>
<tr>
<td>Industry</td>
<td>1376.4</td>
<td>866.1</td>
<td>-510.3</td>
</tr>
<tr>
<td>Agriculture</td>
<td>643.6</td>
<td>514.1</td>
<td>-129.5</td>
</tr>
<tr>
<td>Residential and commercial</td>
<td>726.5</td>
<td>524.4</td>
<td>-202.1</td>
</tr>
<tr>
<td>Other</td>
<td>31.7</td>
<td>10.7</td>
<td>-21</td>
</tr>
<tr>
<td>Land use, land use change and Forestry</td>
<td>-255.2</td>
<td>-302.6</td>
<td>-47.4</td>
</tr>
<tr>
<td>Waste management</td>
<td>243.5</td>
<td>146</td>
<td>-97.5</td>
</tr>
<tr>
<td>CO2 emissions from biomass</td>
<td>198.2</td>
<td>506.1</td>
<td>307.9</td>
</tr>
<tr>
<td>Total excl. LULUCF</td>
<td>5668.7</td>
<td>4285.6</td>
<td>-1383.1</td>
</tr>
<tr>
<td>All transport</td>
<td>5790.7</td>
<td>4761.3</td>
<td>3001.2</td>
</tr>
</tbody>
</table>

Europe and Italy

- Transport & Environment (T&E) - Electric cars emit less CO2 over their lifetime than diesels even when powered with dirtiest electricity (Italy, Europe -55%)
- Romeo Danielis - Le emissioni di CO2 delle auto elettriche e delle auto con motore a combustione interna. Un confronto per l’Italia tramite l’analisi del ciclo di vita, WP SIET (http://sietitalia.org/pubblicazioni.htm). «Le auto elettriche emettono complessivamente meno CO2 delle automobili con motori a combustione interna più vendute in Italia: il 19% in meno delle auto a benzina, il 18% in meno delle auto diesel ed il 9% in meno delle ibride.»
Europe...and the grid is getting cleaner
global warming emissions of electric cars on a life cycle basis—from the manufacturing of the vehicle’s body and battery to its ultimate disposal and reuse.

The fuel economy of new U.S. cars and trucks hit a record 24.7 miles per gallon in the 2016 model year, a government report said.

USA ...and the grid is getting cleaner

In 2018, about 4,178 billion kilowatthours (kWh) (or 4.18 trillion kWh) of electricity were generated at utility-scale electricity generation facilities in the United States.¹ About 63% of this electricity generation was from fossil fuels (coal, natural gas, petroleum, and other gases). About 20% was from nuclear energy, and about 17% was from renewable energy sources. The U.S. Energy Information Administration estimates that an additional 30 billion kWh of electricity generation was from small-scale solar photovoltaic systems in 2018.

¹https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
EVs: are they technically feasible?

Batteries: main component

- More than 5 million electric cars in the streets in December 2018, million miles driven
- Battery lifespan: many charging cycles (most manufacturers are offering 8-year/100,000-mile warranties), degradation curve (3-5% initially then slowing down). “Tesla Batteries Have 90% Capacity After 160,000 Miles, May Last For 500,000 miles” (https://cleantechnica.com/2018/04/16/tesla-batteries-have-90-capacity-after-160000-miles-may-last-for-500000-miles/)
- Rare components: cobalt free (Tesla), new materials
- Battery recycling
- Safety: catching fire
- New batteries, solid state batteries (Toyota)
EVs: are they technically feasible?

EV charging infrastructure

• Home charging: main advantage (if you own a garage)

• Availability: Chicken-egg problem? No, charging stations follow, regulation (and incentives) needed

• Charging time: up to 350 kW existing, 400 kW CHADEMO announced, 900 kW in China tentative
The Tesla network

1,533 stazioni Supercharger con 13,344 paleine Supercharger
IONITY is a joint venture of BMW Group, Daimler AG, Ford Motor Company, and Volkswagen Group with Audi and Porsche. Our goal is simple: Building a high power charging network for electric vehicles along major highways in Europe.
Fastned opens its 100th fast charging station
13 June 2019
EVs: Are they economically feasible?

- The consumers’ point of view (demand side of the market)
 - Monetary attributes: total cost of ownership
 - Non monetary attributes: time to charge, driving range, other social motives

- The automotive industry’s point of view (supply side of the market)
Total cost of ownership
The TCO model

2. Total Cost of Ownership model and break-even BEV MSRP

The private TCO of a vehicle covers all costs occurring over its lifetime. It includes one-time costs, i.e. the lump-sum initial costs (IC), the annual operating costs (AOC) during the period of use minus the residual value (RV) of the vehicle at time T, when it is sold or scrapped.

Initial costs are equal to:

\[IC = MSRP - RD - SUB + RC + HC \]

where MSRP is the manufacturer’s suggested retail price, RD is the retailer’s discount, SUB is the government subsidy, RC is the registration cost and, in the case of electric vehicles, HC is the cost for acquiring and installing the home charging equipment (e.g., wall-box).

AOC includes all the costs incurred during the period of ownership T of the vehicle. For every year \(t \in [1, T] \), AOC is equal to:

\[AOC_t = CT_t + INS_t + MAINT_t + FE_t \]

where CT is the circulation tax, INS is the insurance premium, MAINT are the repair and maintenance costs, and FE stands for the fuel/electricity cost to run the car. These costs vary with the propulsion system and the annual distance travelled.
FE is the product of the fuel/energy efficiency (FE_E) and fuel/electricity price (FE_P). We specify FE_E as follows:

\[FE_E = \gamma \cdot (\alpha \cdot FE_{urb} + (1 - \alpha) \cdot FE_{exturb}) \]

where \(\gamma \) is the weather-adjustment factor, \(FE_{urb} \) and \(FE_{exturb} \) the fuel/energy efficiency in urban and in extra-urban roads, respectively, and \(\alpha \) is the percentage of trips driven in an urban area. We specify FE_P as:

\[FE_P = \begin{cases}
\beta \cdot EP_{home} + (1 - \beta) \cdot EP_{public} & \text{for BEVs} \\
\text{average price of diesel/petrol} & \text{for HEVs, D_ICEVs and P_ICEVs}
\end{cases} \]

For BEVs, the electricity cost depends on whether charging takes place at home or at public chargers. Therefore, we compute the weighted average of the electricity price paid at home, \(EP_{home} \), and that at the public charger, \(EP_{public} \), where \(\beta \) is the percentage of electricity charged at home. For diesel and petrol cars, we consider the average price paid.
The total amount to be paid to the retailer when purchasing the vehicle is equal to MSRP-RD-SUB. If financed with borrowed money at a given APR, its annual amount is equal to:

\[
\frac{(MSRP - RD - SUB) \cdot APR}{1 - (1 + APR)^{-T}}
\]

Further components of the initial costs are RC and HC. Their annualized value is obtained multiplying them by the CRF\(^9\), i.e. the capital recovery factor equal to \((i(1 + i)^T)/((1 + i)^T - 1)\):

\[
(RC + HC) \cdot CRF
\]

The sum of these two components represents the Annualized Initial Cost (AIC):

\[
AIC = \frac{(MSRP - RD - SUB) \cdot APR}{1 - (1 + APR)^{-T}} + (RC + HC) \cdot CRF
\]

\(^9\) APR is expressed as a percentage that represents the actual yearly cost of funds over the term of a loan. This includes any fees or additional costs associated with the transaction but does not take compounding into account.
AOC takes place during the lifetime of the vehicle. We discount it and compute its average value, obtaining the average annual operating cost (AAOC):

\[AAOC = \frac{1}{T} \sum_{t=1}^{T} \frac{AOC_t}{(1+i)^t} \]

Finally, we add the discounted and annualized residual value (DARV):

\[DARV = \frac{RV}{(1 + i)^T} \cdot CRF \]

where RV can be expressed as a percentage η of the MSRP.

Therefore, the annualized TCO metric is the following:

\[ATCO = AIC + AAOC - DARV \]
Therefore, the annualized TCO metric (ATCO) is the following:

$$\text{ATCO} = \text{AIC} + \text{AAOC} - \text{DARV}$$

Dividing this sum by the annual distance travelled (ADT) in kilometers, we finally obtain the metric ATCO/km, which represents the average cost per kilometer of owning a given vehicle:

$$\frac{\text{ATCO}_{\text{km}}}{\text{ADT}} = \frac{1}{\text{ADT}} \left(\frac{(\text{MSRP} - \text{RD} - \text{SUB}) \cdot \text{APR}}{1 - (1 + \text{APR})^{-T}} + (\text{RC} + \text{HC}) \cdot \text{CRF} + \frac{1}{T} \sum_{t=1}^{T} \frac{\text{AOC}_t}{(1 + i)^t} - \frac{\eta \cdot \text{MSRP}}{(1 + i)^T} \cdot \text{CRF} \right)$$

An interesting indicator is to compute which BEVs’ MSRP would make BEV’s ATCO/km equal to that of an alternative propulsion system. Solving the above equation with respect to BEVs’ MSRP, one gets the following result:

$$\text{Break – Even BEV MSRP} = \frac{\text{ATCO}_{\text{comp}} - \text{AAOC} + \frac{(\text{RD} + \text{SUB}) \cdot \text{APR}}{1 - (1 + \text{APR})^{-T}} - (\text{RC} + \text{HC}) \cdot \text{CRF}}{\frac{\text{APR}}{1 - (1 + \text{APR})^{-T}} - \frac{\eta \cdot \text{CRF}}{(1 + i)^T}}$$

where ATCO_{comp} is the average ATCO of the propulsion system we want to compare BEVs with. We define it as the ATCO/km break-even BEV MSRP.
Summary of TCO determinants

• **Market variables**: MSRP, (partly) petrol/diesel and electricity price

• **Financial variables**: Interest rate, own funds or nominal annual percentage rate of charge (APR)/effective APR (or EAPR). In Italy, TAN (tasso annuale nominale)/TAEG (tasso annuo effettivo globale)

• **Policy variables**: subsidies, reduced registration taxes, (partly) petrol/diesel and electricity price, reduced parking, fees to access restricted areas (LTZ),

• **Mobility variables**: Annual distance travelled, % of urban trips

• **Charging habits and location variables**: at home (garage availability) or at public charges
Model implementation in Excel
Further analysis and conclusions

• The TCO model can be further refined including uncertainty and dynamics
• Main conclusions: EVs are not yet cost competitive unless
 – High annual travelled distances
 – Incentivising policies (subsidies, discounts, free parking, etc.)
 – Urban driving
 – Charging at home
•but people make decisions not only based on monetary variables, but also attitudes, beliefs, time constraints and so on..
Discrete choice modelling

All variables are considered;
• Monetary: MRSP, AOC (fuel, maintenance, annual excise fees)
• Technical: acceleration, driving range, emissions, noise
• Time: charging time and charging stations availability
• Mobility needs: cars in the household, % of longer trips, traffic restrictions

Preference data are collected
The discrete choice model is estimated
The discrete choice model is used to forecast EVs uptake

The role of driving range in consumers’ purchasing decision for electric cars in Italy
M Giansoldati, R Danielis, L Rotaris, M Scorrano
Energy 165, 267-274
The automotive industry’s point of view (supply side of the market)

– Increased variety
– Increasing number of charging stations
– Large investments
Variety is increasing: BEV, PHEV, EREV (no HEV) in the USA

Source: InsideEv's.com
Jan. 2012: 9
Jan. 2013: 16
Jan. 2014: 22
Jan. 2015: 24
Jan. 2016: 26
Jan. 2017: 32
Jan. 2018: 42
May, 2019: 45
Coming models 2019-20

- VW: Volkswagen ID.3, Volkswagen ID Crozz, Volkswagen ID Buzz and Cargo Concept
- Audi e-tron SUV, Audi e-Tron GT, Porsche Taycan
- Skoda Citigo, Seat El-Born, Seat Mii electric
- BMW: Mini Cooper SE, BMW i4
- Peugeot e-208
- Tesla Model Y, Tesla semi, Tesla pick up
- Rivian electric SUVs and pick-ups
- Chinese related: Byton EV SUV, Faraday Future FF-91, Polestar 2, Vauxhall Corsa-e
- Honda e

- And Toyota???
Large investments

Table 1. Electric vehicle and battery manufacturing plant investments

<table>
<thead>
<tr>
<th>Automaker group</th>
<th>Announced investment</th>
<th>Electric models</th>
<th>Annual global electric sales (shares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan-Renault-Mitsubishi</td>
<td>$9 billion over 2018-2022 (in China only)</td>
<td>12 electric models by 2022</td>
<td>3 million (30%) by 2022</td>
</tr>
<tr>
<td>Volkswagen Group</td>
<td>$40 billion manufacturing plant by 2022</td>
<td>80 electric models by 2025</td>
<td>2-3 million (20%-25%) by 2025</td>
</tr>
<tr>
<td></td>
<td>$60 billion battery procurement</td>
<td>300 electric models by 2030</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>(not available)</td>
<td>All vehicles hybrid, battery, or fuel cell electric by 2025</td>
<td>2 million (25%) by 2025</td>
</tr>
<tr>
<td>Chongqing Changan</td>
<td>$15 billion by 2025</td>
<td>21 electric models by 2025</td>
<td>1.7 million (100%) by 2025</td>
</tr>
<tr>
<td>BAIC</td>
<td>$1.5 billion by 2022</td>
<td>12 plug-in hybrid models by 2025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.9 billion (with Daimler)</td>
<td>(not available)</td>
<td>1.3 million (100%) by 2025</td>
</tr>
<tr>
<td>Geely</td>
<td>(not available)</td>
<td>All models hybrid or electric by 2019 (Volvo)</td>
<td>1.1 million (90%) by 2020</td>
</tr>
<tr>
<td>General Motors</td>
<td>(not available)</td>
<td>20 electric models by 2023</td>
<td>1 million (12%) by 2026</td>
</tr>
<tr>
<td>Tesla</td>
<td>$4-5 billion battery manufacturing</td>
<td>3-4 electric models (S, X, 3, Y)</td>
<td>0.5 million (100%) by 2020</td>
</tr>
<tr>
<td>Mercedes</td>
<td>$12 billion manufacturing plant</td>
<td>10 electric models by 2025</td>
<td>0.4-0.6 million (15%-25%) by 2025</td>
</tr>
<tr>
<td></td>
<td>$1.2 billion battery manufacturing</td>
<td>50 electrified models by 2025</td>
<td></td>
</tr>
<tr>
<td>BMW</td>
<td>$2.4-3.6 billion procurement by 2025</td>
<td>12 electric models by 2025</td>
<td>0.4-0.6 million (15%-25%) by 2025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 plug-in hybrid models by 2025</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>$11 billion manufacturing plant by 2022</td>
<td>16 electric models by 2022</td>
<td>(not available)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 plug-in hybrid models by 2022</td>
<td></td>
</tr>
<tr>
<td>Great Wall</td>
<td>$2-8 billion over 10 years</td>
<td>(not available)</td>
<td>(not available)</td>
</tr>
<tr>
<td>Jaguar</td>
<td>(not available)</td>
<td>All models hybrid or electric by 2020</td>
<td></td>
</tr>
<tr>
<td>Infiniti</td>
<td>(not available)</td>
<td>All new models plug-hybrid or electric by 2021</td>
<td>(not available)</td>
</tr>
</tbody>
</table>

Note. Details are from press statements from the companies and media reports at time of announcements.

*Assume 1 euro to $1.2 conversion, based on mid-2017 exchange. *Models in this column refer to plug-in electric and non-plug-in hybrids. *Final column has approximated sales and shares of new vehicles based on announced commitments and 2016 sales volume (excluding non-plug-in hybrids).
The crucial factor: the battery chemistries, power-to-weight ratio (per unit weight), energy to weight ratio (specific energy is energy per unit mass) and energy density (per unit volume), cycles (before degradation), recharging time, disposal
Current Li Ion Batteries and Future Targets

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Now</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density (Wh/kg, Wh/L)</td>
<td>220Wh/kg</td>
<td>500Wh/kg</td>
</tr>
<tr>
<td>Cell cost ($/kWh)</td>
<td>$130/kWh</td>
<td>$60/kWh</td>
</tr>
<tr>
<td>Cycle life and calendar life</td>
<td>1,000 cycles 7 years</td>
<td>3,000-10,000 cycles 15-25 years</td>
</tr>
<tr>
<td>Charge rate</td>
<td>1-2 hours</td>
<td><10min</td>
</tr>
<tr>
<td>Safety</td>
<td>Not Safe</td>
<td>Safe</td>
</tr>
</tbody>
</table>

[YouTube Video](https://www.youtube.com/watch?v=vp--eMUexPs)
Declining battery prices (Bloomberg annual survey)

https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
Increasing battery production, economies of scale (Cina, Corea, Giappone, USA)

Announced electric vehicle battery pack production capacity for 2017–2022, by company and region.
https://www.forbes.com/sites/jackperkowski/2017/08/03/ev-batteries-a-240-billion-industry-in-the-making/#1c496603f084
Increasing number of charging stations

Annual sales of light-duty plug-in EVs

https://en.wikipedia.org/wiki/Electric_car_use_by_country
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>49.1%</td>
<td>39.2%</td>
<td>29.1%</td>
<td>22.39%</td>
<td>13.84%</td>
<td>6.10%</td>
</tr>
<tr>
<td>Iceland</td>
<td>19%</td>
<td>14.05%</td>
<td>4.6%</td>
<td>2.93%</td>
<td>2.71%</td>
<td>0.94%</td>
</tr>
<tr>
<td>Sweden</td>
<td>8.2%</td>
<td>5.2%</td>
<td>3.5%</td>
<td>2.62%</td>
<td>1.53%</td>
<td>0.71%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>6.5%</td>
<td>2.6%</td>
<td>6.7%</td>
<td>9.9%</td>
<td>3.87%</td>
<td>5.55%</td>
</tr>
<tr>
<td>Finland</td>
<td>4.7%</td>
<td>2.57%</td>
<td>1.2%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>China</td>
<td>4.2%</td>
<td>2.1%</td>
<td>1.31%</td>
<td>0.84%</td>
<td>0.23%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Andorra</td>
<td>5.6%</td>
<td>N/A</td>
<td>0.81%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Portugal</td>
<td>3.6%</td>
<td>1.9%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Austria</td>
<td>2.6%</td>
<td>2.06%</td>
<td>1.6%</td>
<td>0.90%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.55%</td>
<td>1.8%</td>
<td>1.98%</td>
<td>0.75%</td>
<td>0.44%</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2.53%</td>
<td>1.86%</td>
<td>1.37%</td>
<td>1.07%</td>
<td>0.59%</td>
<td>0.16%</td>
</tr>
<tr>
<td>Belgium</td>
<td>2.5%</td>
<td>2.7%</td>
<td>1.8%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Canada</td>
<td>2.16%</td>
<td>0.92%</td>
<td>0.58%</td>
<td>0.35%</td>
<td>0.28%</td>
<td>0.18%</td>
</tr>
<tr>
<td>France</td>
<td>2.11%</td>
<td>1.98%</td>
<td>1.4%</td>
<td>1.19%</td>
<td>0.70%</td>
<td>0.83%</td>
</tr>
<tr>
<td>USA</td>
<td>2.1%</td>
<td>1.13%</td>
<td>0.90%</td>
<td>0.66%</td>
<td>0.72%</td>
<td>0.60%</td>
</tr>
<tr>
<td>Denmark</td>
<td>2%</td>
<td>0.4%</td>
<td>0.6%</td>
<td>2.29%</td>
<td>0.88%</td>
<td>0.29%</td>
</tr>
<tr>
<td>Germany</td>
<td>1.9%</td>
<td>1.58%</td>
<td>1.1%</td>
<td>0.73%</td>
<td>0.43%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Japan</td>
<td>1.0%</td>
<td>1.1%</td>
<td>0.59%</td>
<td>0.68%</td>
<td>1.06%</td>
<td>0.91%</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.96%</td>
<td>0.72%</td>
<td>0.50%</td>
<td>0.23%</td>
<td>0.21%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Global Total

| California | 7.8% | 4.8% | 3.6% | 3.1% | 3.2% | 2.5% |
| Europe | 2.5% | 1.74% | 1.3% | 1.41% | 0.66% | 0.49% |
The future of EVs
International Energy Agency «Global EV Outlook 2019”

• Electric mobility is expanding at a rapid pace. In 2018, the global electric car fleet exceeded 5.1 million.

• Policies play a critical role (fuel economy standards, incentives for zero- and low-emissions vehicles), policy support to address the strategic importance of the battery technology value chain.

• Technology advances are delivering substantial cost cuts. Key enablers are developments in battery chemistry and expansion of production capacity in manufacturing plants. Other solutions include the redesign of vehicle manufacturing platforms.

• Private sector response to public policy signals confirms the escalating momentum for electrification of transport.

• Positive outlook. In 2030, in the New Policies Scenario, global electric car sales reach 23 million and the stock exceeds 130 million vehicles. In the EV30@30 Scenario, EV sales reach 43 million and the stock is more than 250 million.
The future of EVs

• **Volkswagen is betting its future on electric cars.** VW is increasing the number of **new electric models** it plans to build over the next decade from 50 to 70. The Volkswagen Group said that it now plans to build **22 million electric cars across its brands by 2028**. It said it may also get into the battery manufacturing business in Europe. The Volkswagen Group, which includes Audi, Porsche and Skoda, sold a record 10.8 million cars in 2018. But just 40,000 of those were electric vehicles, and only 60,000 or so were plug-in hybrids.

• **Evergrande**, a Chinese firm believed to be the biggest real estate company in the world, **announced a massive $23 billion investment in the production 1 million electric cars and 50 GWh of batteries per year**. The company is known for having its hands in many different businesses in China and overseas.
EVs....not only cars
Electric Scooters

- **Producers:** Čezeta, Victory Motorcycles, Monday Motorbikes, Mahindra, Zero Motorcycles, Lightning Motorcycle, Energica Motor Company, Johammer, Evoke Motorcycles, Quantya, Electric Motorsport, Hollywood Electrics, Yo, Lito, Romai, Gogoro, Inokim, Rondine Motor, Current Motor Company, KTM and Alta Motors. Yamaha plans to enter the market shortly with at least two models.

- **Scooter sharing in molte città europee**
 - Battery swapping

- **Vendite:** China leads the world in electric scooter sales, comprising 9.4 million of the total 12 million sold worldwide in 2013. There were only 31,338 electric scooter sales outside the Asia-Pacific region including Europe.

- **Piaggio? Coming in September**
Electric Buses

Shenzhen’s transport commission said on Dec. 27 2017 that it had transitioned its 16,359 buses to all-electric models. The city’s 17,000 taxis are next (63% of them are already electric).
Apr 11, 2018 Flixbus launches first long-distance electric bus route in France
Electric Taxis

Florence: 70 new licenses, mandatory BEV.

Next: Bologna, Milan
Urban freight distribution with electric vans

This was a privately organized research initiative at the RWTH Aachen University which later became an independent company in Aachen. In April 2016, Deutsche Post DHL Group announced that StreetScooter GmbH would be scaling up to manufacture approximately 10,000 of the Work vehicles annually, starting in 2017.

Medium to long distance trucks

The Tesla Semi is an all-electric battery-powered Class 8 semi-trailer truck prototype which was unveiled on November 16, 2017 and planned for production in 2019. The company initially announced that the truck would have a 500 miles (805 km) range on a full charge and with its new batteries it would be able to run for 400 miles (640 km) after an 80% charge in 30 minutes using a solar-powered "Tesla Megacharger" charging station.

Bundesverkehrsministerium fördert umweltfreundliche Lkw
Die Höhe der Zuschüsse beträgt 12.000 Euro für E-Lkw bis 12 Tonnen und 40.000 für E-Lkw über 12 Tonnen.
Special transport vehicles in Bern
By the airport..
Air transport?

First Passenger Electric Aircraft to Take Off Soon

Harbour Air operates 30,000 flights over 12 routes in the Pacific Northwest each year, carrying 500,000 passengers on its small seaplanes. MagniX will begin by swapping the fuel tanks and Pratt & Whitney engines on the airline’s six-passenger Havilland Beaver aircraft in exchange for its 560-kilowatt (750-horsepower) electric motor and lithium-ion batteries that provide enough energy to fly about 160 kilometers (100 miles) on a single charge. That, says Harbour, is enough range for the airline’s short-hop flights. Flight tests will happen later this year.

In an important move towards all-electric aviation, startup magniX in Redmond, Washington plans to retrofit Canadian airline Harbour Air Seaplane’s six-passenger Havilland Beaver aircraft with a battery-powered electric motor. The plan is to convert all the airline’s airplanes in the coming years.
International aviation?
River, lake and maritime transport?

Corvus Energy has been selected by Norwegian ferry operator Fjord 1 to supply lithium-ion energy storage systems for 5 new all electric ferries. The new ships are being built by Havyard shipbuilders and are expected to enter service in January of 2020. Fjord 1 already has 8 electric ferries operating on four routes. In all, Corvus Energy has supplied energy storage systems for 40 short range hybrid and electric vessels worldwide.

Corvus Energy battery systems provide power to hybrid and all electric heavy industrial equipment as well as ferries and other vessels. To date, it has supplied over 200 MWh of battery storage to industry. Its battery storage systems have successfully accumulated over 2 million operating hours.
International shipping?
Decarbonising transport: is it possible?

Avoid, Shift, Improve strategy

– Avoid

 • Reduce unnecessary trips (land-use, urban planning, teleconferences)

– Shift to less carbon intensive modes of transport

– Improve: technology mandate

 • Electric vehicles (car, scooters, buses, trains, vans) using electricity from renewable sources
 • Hydrogen fueled vehicles (coaches, trucks, boats) using electricity from renewable sources
 • International aviation and shipping?

Effective and efficient policies to decarbonise transport
Thanks for your attention!
STEP-UP II TRAINING SESSION